Some Plants that can be grown in forest gardens

Hazelnut
Chestnut
Walnut
Apple
Plum
Hardy Almond
Monkey Puzzle
Persimmon
Raspberry
Blueberry
Currant
Gooseberry
Highbush Cranberry
Hardy Kiwi
Grape

Corn Salad
Chilean Tea Berries
Chicory
Mallow
Red Valerian
Earth Chestnut
Parsnip
Jerusalem Artichoke
Skirret
Schizandra
Hardy Citrus
Spinach
Good King Henry
Chocolate Berries
Green Tea

Provided by: Perennial Harvest

Perennial Harvest is a 501(c)(3) non-profit organization dedicated to the research, development, and advocacy of sustainable agriculture.

P.O. Box 132
360-333-5051
Rockport, WA 98283
perennialharvest@gmail.com

In Olympia contact:

Terra Commons
3725 – 36th Loop NW
Olympia, WA 98502
360-339-3329
terracommons@gmail.com
www.terraminerals.us

Edible Forest Gardening

The Oasis, Bellingham, WA

A sustainable and productive way to grow healthy food

By Dave Sansone
Contents

What is a Forest Garden? 3
Increased productivity and lowered risk 5
Nutritional Powerhouse 7
Sustainable cultivation 8
Why isn't all our food produced that way? 10
It's up to you 10
Further reading 10
Informational Websites 11
Where to get plants 11
Sources 11
Some Plants that can be grown in forest gardens 12
In Olympia contact 12

It's 3:00 pm on December 21st and daylight is waning in this secluded area of Northern Washington State. Today is the winter solstice, the first day of winter. The temperature is mild and surprisingly, it isn't raining. It feels good to be outside in the forest garden to see what fresh food I can rustle up for tonight's potluck dinner celebration.

The tail end of autumn covered the ground with snow followed by weeks of freezing fog. Thankfully, the typical mild climate returned in time for me to harvest a feast. I decide to snack on some Chilean Teaberry first. They are chilly and mildly sweet. The attractive evergreen shrubs are loaded with fresh pink berries all winter long—that is, if I can control myself.

Next on the harvest agenda is salad. With a bit of work, I fill a large bowl with over 15 species of salad greens. Each vibrant leaf has its own unique shade of green. I realize on this winter day that my garden offers natural colors that most people won’t see until the emergence of spring still months away. Row covers and greenhouses are not required since most of my salad greens are hardy herbaceous perennials including chicory, mallow, red valerian, and earth chestnut. My favorite, corn salad, is a self-seeding annual that migrates around the garden like a weed. Even after the snow, it’s still tender like butter lettuce.

for the beginner
Plants for a Future, by Ken Fern—Reference book of alternative foods for temperate climates
Edible Forest Gardens by Dave Jacke and Eric Toensmeier—Advanced guide, pricey
The Maritime Northwest Garden Guide produced by Seattle Tilth—Good general guide

Informational Websites
The Bangor Forest Garden—www.thebfg.org.uk
The Agroforestry Research Trust—www.agroforestry.co.uk
Plants for a Future—www.pfaf.org
Where to get plants
Forest Farm—www.forestfarm.com
Burnt Ridge Nursery—www.burntridgenursery.com
Oikos Tree Crops—www.oikostreecrops.com
One Green World—www.onegreenworld.com
Raintree Nursery—www.raintreenursery.com
J.L. Hudson Seeds—www.jlhudsonseeds.com
Wild Garden Seeds—www.wildgardenseeds.com

Sources
1.) Major Themes in Tropical Home Gardens, The Overstory #147
If forest gardening is so great
Why isn’t all our food produced that way?

There are limitations that are inherent to forest gardening that make it nearly impossible to economically compete with industrial agriculture. While modern agriculture makes lots of food for sale, forest gardens make even more food; but forest gardens are simply too complex for machines to do the work. Forest gardens need people. Since farmers are faced with the bottom line of global economics and labor is the most expensive part of agriculture, it is unlikely that forest gardens could produce more profit than mechanized cultivation.

Agroforestry is a hybrid model that relies on very simple polycultures to increase the speed and ease of harvest that has the potential to increase the production and quality of food for sale. Agroforestry is a step in the right direction, but if reliance on fossil fuels and tractors is continued, positive gains will be limited.

It’s up to you

As has been said many times, “It’s up to each of us to make a difference”. Buying our way to sustainability is not really an option since very few items for sale are actually produced in an ecologically sound manner. Forest gardening offers a way for us to provide for ourselves sustainably with greater productivity and nutrition. People like you can plant forest gardens and watch your yard turn into a food forest. There are many community gardens for those that do not have access to their own place to grow some roots.

Some of the many benefits of forest gardening include fresh nutritious food year-round, time to relax under trees while the neighbor fusses with weeding, watering, and mowing; and best of all the enjoyment of a whole new range of foods that you and your family can grow such as chocolate berries, hardy citrus, and green tea. There are some great books and websites that can walk you through the creation of your own forest garden. Remember, as with all projects, start small, do your homework, and enjoy the process.

Further reading
Forest Gardening—Cultivating an Edible Landscape by Robert Hart ~ For inspiration
How to Make a Forest Garden by Robert Whitefield ~ Great

Now it’s time to get my hands dirty, the roots are calling I’m going to dig up some roots for baking. Parsnips, Jerusalem artichokes, and skirret (an ancient perennial root crop from China) all get sweeter when baked.

I have the rest of winter to enjoy these and the other 10 species of edible roots in the garden. With such diversity each meal can be a new creation. Edible forest gardening is opening unlimited choices that add up to many novel and delicious meals with friends and family.

The light continues to fade as I look around the garden. Instead of dreaming about sugarplum fairies tonight, I’ll be dreaming of homemade persimmon butter, chestnuts roasting in my woodstove, and hardy citrus marmalade. The forest garden is still young, but today’s harvest gives me a glimpse of what the future has to offer.

What is a Forest Garden?

A forest garden is a garden modeled after a natural forest that is designed to provide for the needs of people and animals. Just like in a forest, there are many different plants growing with multiple layers of vegetation in one area. This biodiverse planting method is called a polyculture. The polycultural forest garden relies mostly on perennial plants that live and produce for years, such as trees, shrubs, herbs and vines. They are the foundation of the forest garden.

Self-seeding annuals and common vegetables are grown from seed each year and are utilized more in the early stages of the forest garden when the trees are still young and cast little shade. It is the reliance on perennial plants in a polyculture system that makes forest gardening a more productive, sustainable, and nutritious way to supply our necessities.

In 1991, the late Robert Hart of England wrote an inspiring book called Forest Gardening: Cultivating an Edible Landscape. Hart was enthralled with “home gardening”-- a system of multi-story cropping that is widespread throughout the tropics that can have up to 13 layers of vegetation. Home gardening is one of the oldest land use activities dating back to 7,000 BCE (1). Home gardens developed in response to the stresses of an increasing population and a decreasing resource base. Hart was amazed at the productivity and diversity of
these small home gardens and decided to put his lessons to
work in the temperate climate of England. Hart coined his style
of gardening as “forest gardening” but edible landscaping,
permaculture, agroforestry, food forestry all have the similar
theme of perennial polycultures, which can be applied in a
diversity of climates.

Natural sources and there should be no doubt that they are
better than chemical fertilizers for the soil and our families.

Unfortunately, these fertilizers are often by-products
from destructive and polluting factory farms dependent on
chemically grown feed, fish trawlers, clearcut logging, and
mining operations. While natural, these fertilizers have an
ecological footprint that often spans the world.

Hart’s book cites the 3.5 million home gardens in Kerala,
India that provide the majority of food for the 32 million
residents in an area the size of Switzerland. Kerala ranks
second in The Physical Quality of Living Index for Asia despite
being one of the most populous places on Earth and having
an average income of less than $400 per year. Only Japan
ranks higher. Life expectancy rivals the US, literacy rates are
approaching 100%, free hospitals and Ayurvedic clinics are
very common, and ninety percent of the Keralan population
owns land. Their secret is that they don’t need that much
money—practically all of their necessities are growing in the
backyard.

One of the most critical aspects of agriculture is the use
of irrigation. Ancient cultures found that semi-wild plants
produced more when they were watered; the increase in
food allowed human populations to grow. The increased
production and resulting population growth are short lived
because irrigation nearly always leads to the accumulation of
salts in the soil, which progressively render land useless for
agriculture. According to a satellite-mapping project by the
World Resources Institute, roughly 4 million acres of irrigated
land are lost each year to salinization.

Consistently throughout history, cultures have risen and
fallen due to the reliance on a pillar of our civilization—
irrigation.
Increased productivity and lowered risk

"A recurring observation in the literature is that, quite simply, polycultures yield more total production and do so with greater stability and lower risk than monocultures, according to Geno and Geno, authors of the report “Polycultural Production”. They go on to cite studies after study that confirm polycultural systems can outproduce monocultures. Monocultures, also known as monocrops, are plantations of one species such as a field of corn.

One of the cited studies, performed by Stephen Gliessman reports that the traditional indigenous polyculture of corn, beans, and squash in Mexico surprisingly yields 50% more corn than what a monoculture can yield. The beans and squash yield less in the polycultural system than when grown in their own monocultures, but considering the increased yield of corn, the beans and squash are a nice addition to a hug harvest. Intriguingly, there were net gains of nitrogen despite crop removal. (2)

Another study cited by Geno and Geno reveals that polyculture of pears and radishes yielded nearly the same amount as if each were grown in their own monocultures on an equivalent area of land. (3) This means that one acre of polyculture produced the equivalent of nearly two acres of monoculture in one season. This is known as overyielding. Considering increasing hunger and starvation, this more productive model offers hope for a better future.

One reason that polycultures can yield more is because plants are planted in guilds—groups of plants that co-mingle with each other. Think companion plants. Certain plants are generous and “share” extra nutrients with their friend: Some fruit and nut trees’ roots go deep into the ground and draw water and nutrients to the surface, of which a portion is "leaked" and utilized by neighbors. There are man plants that benefit from the extra water, nutrients and shade provided by well-spaced, generous trees. Each plant fills its own ecological niche with its unique root depth, period of dormancy, canopy size, shape and density, along with light, water, and nutritional needs. Plants that fill different niches can thrive in the same area without much competition. This peaceful coexistence allows for the more efficient use of resources.
Some plant members in guilds act as fertilizers. The beans in the corn, beans, and squash polyculture are an example of nitrogen fixing plants that can increase soil fertility. Nitrogen fixers utilize a mutually beneficial relationship with bacteria that gather nitrogen from the air. The bacteria invade the plant’s root hairs and create nodules where the gathered nitrogen is stored. The beans use much of this nitrogen, but some can be channeled to the root systems of other plants in the surrounding area through mycorrhizal fungi that act like a web in the soil that can transport nutrients. Also, nitrogen becomes available by harvesting and composting foliage. According to the Agroforestry Research Trust, “Estimates are that on a global scale, these plants (nitrogen fixers) fix 140 million tons of nitrogen per year.” I find these plants quite inspiring since they help their neighbors and they leave a place better than when they found it. If only more people would take after these humble plants!

Another reason that polycultures can yield more than monocultures is because they are more resistant to pests. Monocultures are unnaturally large plantings of only one species—this provides an unlimited food source that encourages a population explosion of pests. Since polycultural plantings are not dedicated to just one plant species, pest populations can’t get too out of hand. Also, beneficial and predatory insects are encouraged in polycultures since there is a variety of foods and habitats available. This can lead to better pollination and a further decrease in pests through predation.

Polycultures don’t put all their eggs in one basket. A diversity of crops lowers the risk of complete crop failure. This needs to be considered when thinking about production levels. What good is a huge crop if the next year’s cannot be relied upon? Humans in agricultural societies have long been the victims of famines caused by blights, plagues of insects, droughts, and erratic weather. Global warming, pesticide resistance, and peak oil are likely to accelerate this trend. It seems apparent that continued reliance on monocultures is more of a liability than an asset.

To quote soil scientist Daniel J. Hillel, author of Out of the Earth: Civilization and the Life of the Soil, “In the history of civilization, contrary to the idealistic vision of the prophet Isaiah, the plowshare has been far more destructive than the sword.”

The factors that make forest gardening more productive than monocultures also make it more sustainable. Most plants in forest gardens are perennial and provide for years without the yearly cultivation routine associated with the production of annuals. This saves much work and energy; while limiting soil erosion, compaction, and aquifer depletion. Over time, guilds become self-maintaining, like a natural forest. All the niches are filled, which makes it tough for weeds to move in. This means that after initial establishment, little maintenance is required besides harvesting.

The members of guilds act to increase the availability of nutrients, thus imported fertilizers are not needed. Since most of the plants in forest gardens are deep-rooted perennials, they do not need irrigation after their first year or two. The deep roots draw water upward and multiple layers of vegetation slow down the evaporation of water from the soil. Forest gardens are self-fertilizing, self-irrigating, and self-maintaining. That sounds sustainable to me!

Nutritional Powerhouse

Hippocrates’ famous advice has been touted many times, “Let your food be your medicine.” Many of the plants grown in forest gardens are “superfoods” gracing the covers of health and nutrition magazines. These superfoods offer high potency doses of vitamins, minerals, enzymes, amino acids, and anti-oxidants. Some of the better-known superfoods are blueberries, hazelnuts, walnuts, flax, and Jerusalem artichokes.

Since many of the plants in forest gardens are perennial, they are more nutritious. On average, perennial vegetables have 2-3 times more vitamin C, magnesium, calcium, iron, and protein than annual vegetables. Spinach and good King Henry offer a useful example. They are both in the Chenopodium family and are used similarly. Spinach is an annual and is known for being high in vitamins and minerals. Good King Henry is perennial and is virtually unheard of, yet has more than 3 times the vitamin C of spinach and is higher in nearly every vitamin and mineral. (5) My favorite part is that good King Henry is planted once and produces a surprisingly large amount of food for years with little work.